>
数学
>
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.
(I)求证:DE为⊙O的切线;
(II)若⊙O的半径为6,∠BAC=60°,求DE的长.
人气:368 ℃ 时间:2019-08-17 21:50:42
解答
(Ⅰ)证明:连接OD、AD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵△ABC为等腰三角形,
∴DB=DC,
而OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线;
(Ⅱ)∵∠BAC=60°,
∴△ABC为等边三角形,
∴∠B=∠C=60°,
∴△OBD为等边三角形,
∴BD=OB=6,
∴CD=6,
在Rt△CDE中,CE=
1
2
CD=3,
∴DE=
3
CE=3
3
.
推荐
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问: (1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E. (I)求证:DE为⊙O的切线; (II)若⊙O的半径为6,∠BAC=60°,求DE的长.
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E. (I)求证:DE为⊙O的切线; (II)若⊙O的半径为6,∠BAC=60°,求DE的长.
如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问: (1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上
已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
高一文言文句式解析题.
8,1,4,5算24点,
猜你喜欢
A:_______ your aunt live near Yuexiu Park?B:No ,_______ near Donghu Park.
在山的那边阅读 第二节表现了诗人怎样的感情
求简谐运动各质点的最大振动速度和最大加速度?用振动方程还是波动方程的 急
三角形中最小角的取值范围0到60度,为什么
利用围墙,用60m长的篱笆在墙边围出一块长方形的场地,若长比宽多15m,则长和宽各是多少?长方形的面积是
When the little girl awoke,she found herself ______by a group of soliders.a.surrounded b.being surrounded 选a还是b两者表达有什么区别
为什么a=mg/M变为a=mg/M+m,M是车的重量啊关,加速度关砝码m什么事
读读写写
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版