求微分方程y"-y'=e^x+4的一个特解Y的形式
人气:170 ℃ 时间:2020-05-22 16:30:35
解答
没这么复杂吧.对xe^x求导得xe^x+e^x,那么如果y'=xe^x,则y''-y'=e^x.那么,令y'=xe^x-4,则这个y'是方程的一个特解.下面要给它增加一个不定常数.注意到e^x的导数还是e^x,只要给y'补上(C[1]+1)e^x即可.
现在y'=xe^x+(C[1]+1)e^x-4,那么,y=xe^x-4x+C[1]e^x+C[2],你想知道特解只要给C[1],C[2]随便取值就行了.
推荐
猜你喜欢
- 一批货,大车要运16辆,小车要运48辆才能运完.大车比小车每车多运4吨.请问这批货有多少?
- 《蒙娜丽莎之约》练习题
- “重温老师给你留下的难忘回忆,写信给老师”的作文怎么写
- 依法纳税是每个公民应尽的义务,小芳的妈妈上个月的工资总额是2000元,按照个人所得税法规定,超过2000元
- 齐次方程组x1+x2=0,x2-x4=0,基础解系为k1(0,0,1,0)^T+k2(-1,1,0,1)^T,问第一个解向量 是怎么得来的
- 大地怎么造句
- 为什么一般情况下,弱电解质浓度越大,电离度小?特殊情况是指?
- 类似于日日行,不怕千万里;常常做,不怕千万事的名句?