已知{an}等差数列,{bn}等比数列,a1=b1,a2=b2,a2≠a1,且对所有的自然数n恒有an>0,求证:当n>2时,an
人气:202 ℃ 时间:2019-12-13 23:28:57
解答
假设,K=a2/a1;t=b2-b1=a2-a1则,an=(n-1)t+a1=(n-1)a2+(n-2)a1=(Kn-K+n-2)a1bn=K^(n-1) *a1因此,只要证明,K的n-1次方,比Kn-K+n-2大,在K>1,n>2的情况下,恒成立就行了.这里,建议用数学归纳法~在n=3时,K的平方,比2K+1大...
推荐
- 已知{an}等差数列,{bn}等比数列,a1=b1,a2=b2,a2≠a1,且对所有的自然数n恒有an>0,求证:当n>2时,an
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 已知等差数列an的首项a1=1,a6=3a2,等比数列bn满足b1=a1,b2=a2.
- 在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
- 已知等差数列an和等比数列bn,其中a1=b1,且对某一个自然数n,有a2n+1=b2n+1,是比较an+1和bn+1的大小
- 黑洞里面是什么,里面是怎样的.黑洞引力多大?
- 26乘5的积比3600除以25的商少多少?算式!
- 儿童和平条约
猜你喜欢