过P(1,0)作抛物线y=√(x-2)的切线,求切线方程
人气:226 ℃ 时间:2020-01-25 04:28:33
解答
y=√(x-2)
y'=1/[2√(x-2)]
p(1,0)不在曲线上
设切点为a,则切线为:y=(x-a)/[2√(a-2)]+√(a-2)
代入P,得:0=(1-a)/[2√(a-2)]+√(a-2)
化为:(1-a)+2(a-2)=0
得:a=3
所以切线为:y=(x-3)/2+1=(x-1)/2设切点为a, 则切线为:y=(x-a)/[2√(a-2)]+√(a-2)这个具体怎么得到的?代入切线方程公式y-b=k(x-a)就可以得到a点坐标多少?a=3代人原方程就可以得到a点坐标a(3,1)
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?