已知数列{an}满足a1=0,an+1 +Sn=n2+2n(n属于N*),其中Sn为{an}的前n项的和,求此数列的通项公式.
人气:218 ℃ 时间:2020-10-01 10:12:22
解答
a(n+1)+Sn=n^2+2n
an+S(n-1)=(n-1)^2+2(n-1)
两式相减得
a(n+1)+Sn-an-S(n-1)=n^2+2n-(n-1)^2-2(n-1)
a(n+1)+an-an=n^2+2n-n^2+2n-1-2n+2
a(n+1)=2n+1
a(n+1)=2(n+1)-1
an=2n-1
a(n+1) +Sn=n^2+2n
Sn=n^2+2n-a(n+1)
=n^2+2n-(2n+1)
=n^2+2n-2n-1
=n^2-1
an=sn-s(n-1)
=n^2-1-[(n-1)^2-1]
=n^2-1-n^2+2n
=2n-1
推荐
- 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.求a1的值以及an的通项公式.
- 设数列An的前n项满足A1=0,An+1+Sn=n2+2n求通项公式
- 已知数列首项a1=1/2,其前n项和为Sn=n2(平方)an,则数列{an}的头像公式为?
- 已知数列{an}前n项和为Sn,a1=2,Sn=n2+n,(1)求数列{an}的通项公式 (2)设{1/Sn}的前n项和为Tn,求证Tn
- 数列{an}的前n项和sn=n(2n-1)an并且a1=1/3求此数列的通项公式及前n项和公式
- 若cos(a+b)=1/4,cos(a-b)=2/3,求tana*tanb
- concerned about与worry about的区别
- 6+63+4+5+8+9+55++5+45+4+5+4++4+6+46=?
猜你喜欢