(1) 当⊙P在移动中与AB相切时,设切点为M,连接PM,则∠AMP=90°,
∴△APM∽△ABC,
∴
| AP |
| AB |
| PM |
| BC |
∵AP=t,AB=
| AC2+BC2 |
∴
| t |
| 5 |
| 1 |
| 3 |
∴t=
| 5 |
| 3 |
(2)证明:∵BC⊥AC,PD⊥AC,
∴BC∥DP,
当t=
| 16 |
| 5 |
| 16 |
| 5 |
∴PC=4-
| 16 |
| 5 |
| 4 |
| 5 |
∴EC=
| PE2-PC2 |
12-(
|
| 3 |
| 5 |
∴BE=BC-EC=3-
| 3 |
| 5 |
| 12 |
| 5 |
∵△ADP∽△ABC,
∴
| PD |
| BC |
| AP |
| AC |
∴
| PD |
| 3 |
| ||
| 4 |
∴PD=
| 12 |
| 5 |
∴PD=BE,
∴当t=
| 16 |
| 5 |

当