> 数学 >
设二次函数f(x)=ax2+bx+c(a,b,c为常数)的导函数为f′(x).对任意x∈R,不等式f(x)≥f′(x)恒成立,则
b2
a2+c2
的最大值为 ___ .
人气:368 ℃ 时间:2020-03-31 09:21:35
解答
∵f(x)=ax2+bx+c,∴f′(x)=2ax+b,∵对任意x∈R,不等式f(x)≥f′(x)恒成立,∴ax2+bx+c≥2ax+b恒成立,即ax2+(b-2a)x+(c-b)≥0恒成立,故△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,即b2≤4ac-4a...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版