过双曲线x^2/a^2-y^2/b^2=1的左焦点作圆x^2+y^2=a^2/4的切线,切点为E,延长FE交双曲线右支于点P,若向量OE=1/2(向量OF+向量OP),则双曲线的离心率是_
根号10/2
麻烦不要复制百度上的错误答案上来
人气:293 ℃ 时间:2019-08-18 22:09:38
解答
因为向量OE=1/2(向量OF+向量OP),所以2OE=OF+OP,可得E是PF中点,且PF垂直OE
在三角形OFE中,由勾股定理得(1/2PF)^2+a^2/4=c^2
又|PF|-|PF'|=2a
所以(1/2*3a^2)+a^2/4=c^2
所以c^2/a^2=10/4
所以e=根号10/2
推荐
- 过双曲线x2a2-y2b2=1 (a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为 _ .
- 过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x^2+y^2=a^2/4的切线,切点为E,延长FE
- 从双曲线x^2/a^2-Y^2/b^2=1(a大于0,b大于0)的左焦点F引圆x^2+Y^2=a^2的切线,切点为T,延长
- 过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)作圆:x^2+y^2=a^2的切线,切点为E,延长FE
- 过双曲线x^2/a^-y^2/b^2=1(a>0b>0)的左焦点F1(-c,0)作圆x^2+y^2=a^2/4的切线 切点为E
- 求一幅丰子恺漫画和关于这幅漫画的作文怎么写?
- Mr Brown is my favorite.对Mr Brown 提问 ____ ____ ____favorite teacher?
- 用一个英文单词来形容对家人的爱
猜你喜欢
- 1.计算2*1,2*二分之一,2*(负1),2*(负二分之一).联系这类具体的数的乘法,你认为一个非0有理数一定小于它的2倍吗?为什么?
- 关于化工原理流体力学的综合实验的问题?
- 修一条路,第一次修了全长的5分之2,第二次修了280米,这时剩下的与已修的比是1:3.这条路长多少米?
- 已知数列前4项为:4,-3,2,-1那么5是这个数列的第几项?
- must表必须时等于have 如果不等于,考试时是不可替换的吗?
- 为什么经常参加体育锻炼或适宜的体力运动会使参与呼吸的肺泡数目增多?
- 速来
- 哪些方法磨练自己的意志?