> 数学 >
过双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为 ___ .
人气:440 ℃ 时间:2019-08-18 22:13:22
解答
设双曲线的右焦点为F',则F'的坐标为(c,0)
因为抛物线为y2=4cx,
所以F'为抛物线的焦点 O为FF'的中点,
E为FP的中点所以OE为△PFF'的中位线,
那么OE∥PF'
因为OE=a 那么PF'=2a
又PF'⊥PF,FF'=2c 所以PF=2b
设P(x,y) x+c=2a x=2a-c
过点F作x轴的垂线,
点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2
4c(2a-c)+4a2=4(c2-a2
得e=
5
+1
2

故答案为:
5
+1
2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版