设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值
人气:243 ℃ 时间:2019-08-20 23:29:58
解答
a=5、b=3,则c=4.
焦点在y轴上,设F1(0,4),设AB的斜率为k.
AB的方程为:y=kx.代入椭圆方程得:(25+k^2)x^2-225=0.x1+x2=0、x1x2=-225/(25+k^2).
[AB]=√(1+k^2)√[(x1+x2)^2-4x1x2]=30√(1+k^2)[1/√(25+k^2)]=30√(1+k^2)/(25+k^2).
F1到AB的距离=4/√(1+k^2).
△ABF1=60/√(25+k^2)<=12,当且仅当k=0时等号成立.
所以,△ABF1面积的最大值12.
推荐
猜你喜欢
- 形容音乐美妙的词语
- 已知y=(根号下2x-3)+(根号下3-2x)+5,求根号下x+y+5/2的平方根
- 那一天我笑了 作文600--800字
- 若ab不等于0,求a分之a的绝对值+b分之b的绝对值的值
- This is a new student ,Ann?_____.A.What's your name B.How do you do C.Are you ,Ann?
- 按规律填数:三分之一,二分之一,九分之五,十二分之七,五分之三,十八分之十一……第11个数是( ),第n个数是多少?
- what do most festivals seem to have in common?求3种答案、
- 名言警句及解释