设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值
人气:331 ℃ 时间:2019-08-20 23:29:58
解答
a=5、b=3,则c=4.
焦点在y轴上,设F1(0,4),设AB的斜率为k.
AB的方程为:y=kx.代入椭圆方程得:(25+k^2)x^2-225=0.x1+x2=0、x1x2=-225/(25+k^2).
[AB]=√(1+k^2)√[(x1+x2)^2-4x1x2]=30√(1+k^2)[1/√(25+k^2)]=30√(1+k^2)/(25+k^2).
F1到AB的距离=4/√(1+k^2).
△ABF1=60/√(25+k^2)<=12,当且仅当k=0时等号成立.
所以,△ABF1面积的最大值12.
推荐
猜你喜欢
- 把1296分为甲乙丙丁四个数,如果甲数加上2,乙数减去2,丙数乘2,丁数除以2,则四数相等求四数分别是多少?
- 1/3+1/15+1/35+1/63+1/99=?
- 一种电视机原价2500元,现价每台2100元,现价是原价的百分之几
- 用一句古诗词形容我的外祖父
- 把成语补充完整:精兵()政
- 8,9,16,2谁和谁是互质数?》
- 英语.
- 知子莫若母 什么意思 谁能用简单文字 详细解释 谢谢你