放缩!不等式放缩法的极品难题!
若x,y,z,a,b,c,r>0,证明:
(x+y+a+b)/(x+y+a+b+c+r)+(y+z+b+c)/(y+z+a+b+c+r)
>(x+z+a+c)/(x+z+a+b+c+r)
字母没错
放心做吧
人气:430 ℃ 时间:2020-06-11 10:47:16
解答
这个不等式不强.放缩两次仍成立.证明:(x+y+a+b)/(x+y+a+b+c+r)+(y+z+b+c)/(y+z+a+b+c+r)>(x+y+a+b)/(x+y+z+2a+b+c+r)+(y+z+b+c)/(x+y+z+2a+b+c+r)=(x+2y+z+a+2b+c)/(x+y+z+2a+b+c+r)>(x+y+z+a+b+c)/(x+y+z+2a+b+c+r...
推荐
猜你喜欢