已知圆x^2+y^2=4,又Q(根号3,0),P为圆上任一点,则PQ的中垂线与OP的焦点M轨迹为 (O为原点)
人气:331 ℃ 时间:2019-10-10 04:48:06
解答
首先,作这些题我的建议的你要先画图!
基本上画出图来这道题你就解开了一半了.
图你自己画啊.
连结MQ
因为 在PQ的中垂线上的点到P、Q的距离是相等的;
所以 MP=MQ;
又因为 MP+OM=r=2;
所以 M轨迹为一椭圆.
且2c=根号3,a=1------------------------ MP+OM=2a=r=2;
则a^2=1
b^2=a^2-c^2=1/4
之后的就代入椭圆公式就好了,不过公式里面的x^2要变成(x-2分之根号3)^2
最终的答案为:
(x-2分之根号3)^2+4y^2=1
推荐
- 椭圆中心是坐标原点O,焦点在x轴上,e=根号3/2 过椭圆的左焦点F的直线交椭圆于PQ两点
- 椭圆中心在坐标原点,焦点在坐标轴上,y=x+1与该椭圆相交于P,Q,且OP垂直OQ,PQ=根号10,分之2,椭圆方程
- 已知椭圆C的中心在原点 焦点在y轴上 焦距为2倍根号3 且过点M*(-根号13/4,根号3/2)
- 已知中心在原点o 焦点在x轴上 离心率为2分之根号3的椭圆过点(根号2.2分之根号2)-1.求椭圆的
- 设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
- That man is our Chinese teather,you saw him in the library
- 帮我分析一下下面的题目,谢谢
- 为什么入射角增大衍射光斑数目减少
猜你喜欢