> 数学 >
已知向量a=(√3sinx,cosx),b=(cosx,cosx),函数f(x)=ab+m
其中m为正实常数,1,求f(x)的最小正周期及单调递增区间.2,当-∏/6<=x<=∏/3是,若f(x)的最小值为2,求f(x)的最大值
人气:131 ℃ 时间:2020-07-01 01:30:59
解答
1.f(x)=√3sinxcosx+cosxcosx+m
=(√3/2)sin2x+(1/2)cos2x+1/2+m
=sin(2x+π/6)+1/2+m
最小正周期T=2π/2=π
单增区间2x+π/6∈[2kπ-π/2,2kπ+π/2]
x∈[kπ-π/3,kπ+π/6]
2.当-∏/6
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版