f(x)在[0,1]上连续,证明:∫[0,1]f(x)dx∫[x,1]f(y)dy=1/2(∫[0,1]f(x)dx)的平方
人气:121 ℃ 时间:2019-09-25 22:46:53
解答
设原函数为F(x),
∫[x,1]f(y)dy=F(1)-F(x)∫[0,1]f(x)dx∫[x,1]f(y)dy=∫[0,1]f(x)(F(1)-F(x))dx=F(1)∫[0,1]f(x)dx - ∫[0,1]F(x)d(F(x))=F(1)(F(1)-F(0)) - 1/2 [(F(1))^2 - F(0)^2]=1/2(F(1)^2 - 2F(1)F(0) + F(0)^2] =1/2(∫[0,1]f(x)dx)^2不懂可追问
推荐
- 设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
- 证明 ∫[0,a]dx∫[0,x]f(y)dy=∫[0,a](a-x)f(x)dx
- 设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,
- 设f(y)连续,证明∫a→b dx∫a→x f(y)dy=∫a→b f(y)(b-y)dy
- f(x)在[0,1]连续(0,1)内可微,且0
- 延的偏旁叫什么名称?
- 动词前一定要加be动词吗?
- 求一些句子 如何让你遇见我 在我最美丽的时刻 差不多的
猜你喜欢