> 数学 >
已知双曲线x2/a2-y2/b2=1(a>0,b>0)的右焦点为F,过F作直线PF垂直于该双曲线的一条渐近L于P(√3/3,√6...
已知双曲线x2/a2-y2/b2=1(a>0,b>0)的右焦点为F,过F作直线PF垂直于该双曲线的一条渐近L于P(√3/3,√6/3),求双曲线的方程.过程步骤
人气:329 ℃ 时间:2020-03-28 09:21:18
解答
渐进线方程为y=b/a*x,且过点P,代入得b/a=√2,
PF所在直线的斜率为-√2/2,所以该直线为y=-√2/2x+(2√6+√3)/6
得到F点的坐标为((4√3+√6)/6,0)即a^2+b^2=(4√3+√6)/6*(4√3+√6)/6,字数有限,追问!
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版