求抛物线y^2=4(1-x)在(0,2)处的切线和x轴所围成的平面图形,绕x轴旋转所得的旋转体
的体积
人气:318 ℃ 时间:2019-08-20 03:10:14
解答
由题意可求得切线方程是y=2-x,根据抛物线和切线作图.
故根据图形德 旋转体的体积=∫π(2-x)²dx-∫π[4(1-x)]dx
=[-π(2-x)³/3]│+[2π(1-x)²]│
=8π/3-2π
=2π/3
推荐
- 过P(1,0)作抛物线y=根号下(x-2)的切线,该切线与上述抛物线及 x轴围成平面图形试求该平面图形的面积
- 求由抛物线y=1+x^2,x=0,x=1及y=0所围成的平面图形的面积,并求该图形绕x轴旋转一周所得旋转体体积.
- 过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积
- (1)求由抛物线y^2=4(1-x)及其在(0 ,2)处的切线和X轴所围的图形绕Y轴旋 转产生的旋转体的体积.
- 过P(1,0)作抛物线y=根号下(x-2)的切线,该切线与上述抛物线及 x轴围成平面图形
- you were silly not _____your car .
- (5x+2y-12)的平方与3x+2y-6的绝对值互为相反数,求x+y
- (-2又八分之三)化成小数是多少阿
猜你喜欢