设f(u,v)具有二阶连续偏导数,z=f(e^xsiny,x^2+y^2). 计算δ^2z/δx^2 (δ为偏导数符号) 急求解答步
人气:268 ℃ 时间:2020-02-02 19:49:55
解答
令e^xsiny=u,x^2+y^2=v
则δz/δx
=δf/δu*δu/δx+δf/δv*δv/δx
=δf/δu*(e^xsiny)+δf/δv*(2x)
δ^2z/δx^2
=δ^2f/δu^2*(e^xsiny)*(e^xsiny)+δ^2f/δuδv*(2x)*(e^xsiny)+δf/δu*(e^xsiny)+δ^2f/δvδu*(e^xsiny)*2x+δ^2f/δv^2*(2x)*(2x)+2δf/δv
=(e^2x*(siny)^2)*δ^2f/δu^2+(e^xsiny)* δf/δu+(4xe^xsiny)*δ^2f/δuδv+4x^2*δ^f/δ^2v+2δf/δv
(f(u,v)具有二阶连续偏导数=>δ^2f/δuδv=δ^2f/δvδu)
推荐
- 设z=f(2x-y)+g(x,xy),其中函数f二阶可导,g具有二阶连续偏导数,求a^2z/axay (a就是那个偏导符号)
- 设Z=f(u,x,y),u=x(e^y),其中f具有连续的二阶偏导数,求d^2Z/dxdy
- 已知u=f(x^2-y^2,e^xy) ,其中f 具有一阶连续偏导数,求 偏导.&是偏导符号,&u/&x,&u/&y.
- 设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay
- 二阶偏导数里很像德尔塔的符号怎么读,如δz/δx δF/δx
- 以亮点为话题的作文
- 一质量为m的质点,系在细绳的一端,绳的另一端固定在平面上此质点在粗糙水平面上作半径为r的圆周运动
- 英语翻译
猜你喜欢