> 数学 >
(1/n)^3+(2/n)^3+……(n/n)^3=an^2+bn+c/n 数学归纳法
(1/n)^3+(2/n)^3+……(n/n)^3=(an^2+bn+c)/n 数学归纳法求证
人气:133 ℃ 时间:2019-11-11 12:40:13
解答
先将n=1,2,3代入原式得关于a,b,c的方程组求得a=1/4,b=1/2,c=1/4;原式变为:
(1^3+2^3+……n^3)/n^3=(n+1)^2/(4*n)
1、令n=1,原式成立;
2、假设n=k时,原式成立;
3、令n=k+1,有(1^3+2^3+……+(k+1)^3)/(k+1)^3
=[(1^3+2^3+……+k^3)/k^3]*k^3/(k+1)^3+1
约分化简得n=k+1时,原式=(k+2)^2/(4*(k+1)),成立.
综上,(1/n)^3+(2/n)^3+……(n/n)^3=((1/4)n^2+(1/2)n+(1/4))/n
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版