设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
导数等于-f(a)/a.
人气:292 ℃ 时间:2019-07-29 19:34:54
解答
令g(x)=xf(x)
则g(x)在[0,1]上连续,在(0,1)内可导,且g(1)=0=g(0)
由罗尔中值定理 知有一点a属于(0,1)使得 g`(a)=0
0=g`(a)=f(a)+af`(a)
即f`(a)=-f(a)/a.
推荐
- 设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
- 设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0,2),使得f(a)'+f(a)=1
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在点x0属于(0,1)
- 设函数f(x)在[a,b]上连续,在(a,b)内可导(0
- CaCl2溶液是什么颜色
- mum can i have one more cake to eat
- 根据疑似写出相应的带“笑”的词语
猜你喜欢