a、b、c都是正实数,求证:(b+c)/2a+(a+c)/2b+(a+b)/2c>=2a/(b+c)+2b/(a+c)+2c/(a+b),
人气:455 ℃ 时间:2020-02-05 19:50:29
解答
(b+c)/2a+(a+c)/2b+(a+b)/2c>=2a/(b+c)+2b/(a+c)+2c/(a+b),=b/2a+c/2a+a/2b+c/2b+a/2c+b/2c-2a/(b+c)-2b/(a+c)-2c/(a+b)=b/2a+b/2c-2b/(a+c) + c/2a+c/2b-2c/(a+b) + a/2c+a/2b-2a/(b+c)b/2a+b/2c-2b/(a+c)=b(1/2a+1...
推荐
- 【选修4-4 不等式证明】设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/b+c+1/c+a+1/a+b.
- 若a,b,c为实数,证明a÷(b+2c)+b÷(c+2a)+c÷(a+2b)>=1.
- 已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
- 【选修4-4 不等式证明】设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/b+c+1/c+a+1/a+b.
- 若实数a,b,c,满足A=a^2-2b+π/2,B=b^2-2c+π/3,C=c^2-2a+π/6
- she does not know london very well and she lost her way 变一般疑问句
- 那些氧化还原反应与反应物质的浓度与温度有关
- 一般物体被加热到多少度发光?超过多少度为白炽
猜你喜欢