【选修4-4 不等式证明】
设a、b、c均为正实数,求证:
+
+
≥
+
+
.
人气:207 ℃ 时间:2019-11-23 15:08:45
解答
证明:∵a、b、c均为正实数.
∴
(
+
)≥
≥
,当a=b时等号成立;
(
+
)≥
≥
,当b=c时等号成立;
(
+
)≥
≥
,当a=c时等号成立;
三个不等式相加即得
+
+
≥
+
+
,
当且仅当a=b=c时等号成立.
推荐
- 【选修4-4 不等式证明】设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/b+c+1/c+a+1/a+b.
- 设a,b,c均为实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(a+c)+1/(a+b)
- 设啊,a,b,c均为实数,求证1/2a/2b/2c≥1/b+c +1/c+a +1/a+b
- 设a,b,c,是正实数,且abc=1 .求证1/(1+2a)+1/(1+2b)+1/(1+2c)≥1
- 【选修4-4 不等式证明】设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/b+c+1/c+a+1/a+b.
- 矩形ABCD中 AC BD 相交与0 AE平分角BAD 若∠EAO等于15度 角BOE等于=
- 数学填空题!速度!快!
- 一三为近义词的成语.
猜你喜欢