p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP
人气:478 ℃ 时间:2019-08-18 19:05:42
解答
“樱之雪舞—欣 ”:
OA⊥PA,OB⊥PB(半径⊥切线)
PA=PB(圆外一点到圆的切线相等),OP=OP,
∠PAO=∠PBO=90°
△PAO≌△PBO
∠POB=∠POA
∠ACO=1/2(∠AOB=∠POB(等弧的圆周角等于圆心角的一半)
∴AC//OP(同位角相等,二线平行)
祝好,再见.
推荐
- 如图所示,BC是⊙O的直径,P为⊙O外的一点,PA、PB为⊙O的切线,切点分别为A、B.试证明:AC∥OP.
- 已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP
- P是圆O外一点,PA,PB是圆O切线,A,B是切点,AB交OP于点C,求证:CP⊥AB,且AC=BC.
- 如图所示,BC是⊙O的直径,P为⊙O外的一点,PA、PB为⊙O的切线,切点分别为A、B.试证明:AC∥OP.
- P为圆O外一点PA,PB为圆O切线,BC为直径.求证:CA‖OP
- 关于人工智能
- 用“光彩”的不同意思造两个句子,马上就要,
- 欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,
猜你喜欢