在数列{an}中,a1=2,an=2an-1+2^(n+1)(n>=2,)令bn=an/2^n,求证bn是等差数列,并写出其通项公式;
人气:396 ℃ 时间:2019-10-19 20:00:48
解答
将an=2an-1+2^(n+1)(n>=2,)令bn=an/2^n两边除以2^n,得an/2^n=2a(n-1)/2^n+2,即
bn=a(n-1)/2^(n-1)+2,所以bn=b(n-1)+2,所以bn是等差数列.b1=a1/2=1,所以bn=2n-1
推荐
- 知数列an满足a1=4 an=4-4/an-1(n大于等于2)令bn=1/[(an)-2]求证bn是等差数列 求数列an的通项公式
- 已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
- 在数列{an}中,a1=1,an+1=1-1/(4an),bn=2/((2an)-1).求证数列{bn}是等差数列,并求an的通项公式
- 已知数列{an}满足a1=4,an=4-4/an-1(n>=2),设bn=1/an-2(1)求证{bn}是等差数列;(2)求数列的{an}的通项公式.
- 已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求数列{an}的通项公式.(2)令bn=an*3^n,求{bn}的前n项和
- 向量a=(5,12),向量a+向量b=(8,8)则向量a与向量b的夹角的余弦值为多少?
- 被称为中国国宝级四大珍稀动物分别是那四个
- 求过氧化氢的质量分数
猜你喜欢