> 数学 >
问一道高二反证法题
设函数f(x)是R上的增函数,a,b都属于R,对于命题:“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.问:(1)判断这个命题正确与否,并证明你的结论;(2)问这个命题的逆命题:“若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0”成立吗?证明你的结论.
人气:398 ℃ 时间:2020-05-26 05:03:05
解答
a+b>=0
a>=-b
f(x)是R上的增函数
所以f(a)>=f(-b)
a+b>=0
b>=-a
f(x)是R上的增函数
所以f(b)>=f(-a)
相加
所以f(a)+f(b)>=f(-a)+f(-b)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版