取其中一个满足要求的子集A来分析:
A={a1,a2,a3...an (n>=3)}
a1,a2,a3中至少有2个人互不认识 ,假设a1和a2不认识!
则:A中必只有一个人am认识a1和a2!
而A中除了am所有的人都不认识a1和a2!
再看看,认识am的人都有谁,显然a1和a2认识!
若还存在一个am1认识am,则:am1不认识a1,不认识a2
所以:A中必定有且只有一个am2认识am1和a1!
而上面我们说到A中除了am所有的人都不认识a1和a2!
所以我们假设的am1不成立!
换言之,认识am的人就只有a1和a2!
假设集合中的另一个元素am3,显然他不认识am,
那么显然根据(3),集合中必有一个人认识am,和am3
而我们说了认识am的人就只有a1和a2!
所以我们假设的am3不成立!
所以A中只能有3个元素!{a1,a2,am}
但是这样的话am就认识了集合中的所有人,不符合(1)
所以这样的子集是不存在的!