> 数学 >
在三角形ABC中,若sin2B+sin2C=sin2A,判断三角形形状?
sin2B+sin2C=sin2A
就这个条件能不能解?不能要说明理由?
人气:495 ℃ 时间:2020-01-28 19:25:35
解答
左边和差化积 右边用二倍角公式
2sin(B+C)cos(B-C)=2sinAcosA=-2sin(B+C)cos(B+C)
sin(B+C)显然不为0
则cos(B-C)+cos(B+C)=0
和差化积
2cosBcos(-C)=0
故cosB cosC 必有一个为0
故B C 必有一个是直角
故为直角三角形
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版