> 数学 >
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果|AB|=8,则直线l的方程为(  )
A. 5x+12y+20=0
B. 5x-2y+20=0
C. 5x+12y+20=0或x+4=0
D. 5x-2y+20=0或x+4=0
人气:483 ℃ 时间:2020-03-22 01:46:51
解答
由圆x2+y2+2x-4y-20=0,
化为标准方程为(x+1)2+(y-2)2=25.
∴圆的圆心M(-1,2),半径为5,又直线l被圆截得的弦长|AB|=8,
∴圆心到直线l的距离d=
5242
=3

当过点(-4,0)的直线斜率不存在时,直线方程为x+4=0,满足条件;
当斜率存在时,设直线方程为y=k(x+4),
即kx-y+4k=0.
由圆心到直线的距离d=
|−k−2+4k|
k2+1
=3

解得:k=-
5
12

直线l的方程为
5
12
x−y+4×(−
5
12
)=0

即5x+12y+20=0.
综上,所求直线方程为5x+12y+20=0或x+4=0.
故选:C.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版