设f(x)在【0,1】上连续可导,且f(1)=2∫ x三次方*f(x)dx,(上限1/2,下限0)证明:
必有点k属于(0,1),使得k*f”(k)+3f(k)=0
人气:230 ℃ 时间:2020-02-05 22:45:14
解答
由积分中值定理:对于 ∫ x三次方*f(x)dx,(上限1/2,下限0)
存在η∈[0,1/2]使得:(上限1/2,下限0)∫ x三次方*f(x)dx=(1/2)η三次方*f(η)
两边乘以2后得η三次方*f(η)=2*∫ x三次方*f(x)dx=f(1)
即:η三次方*f(η)=f(1)
设g(x)=x三次方*f(x),则g(1)=f(1),g(η)=η三次方*f(η)=f(1)
因此g(x)在[η,1]内满足罗尔定理条件,由罗尔定理,存在k∈(η,1)包含于(0,1)内
使得:g'(k)=0,g'(x)=3x平方*f(x)+x三次*f '(x)
得:3k平方*f(k)+k三次*f '(k)=0即:k*f”(k)+3f(k)=0
推荐
- 设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
- F'(X)=f(x) 求∫下限a 上限b e的-x次方f(e的-x次方)dx
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx
- (∫f(x)dx)^2(x下限为a,上限为b)
- 已知f(x)的一个原函数x的3次方,则上限1下限-1(x+1)f’(x)dx=
- In the end ,I found the answer _ the difficult question.A.to B.of C.about
- 求part of your world的歌词加翻译
- 一本书,已经看了总页数的60%,没有看的与全书的比是( ) A.2:3 B.3:5 C.2:5 D.1:3
猜你喜欢