
∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵AE⊂平面PAB,∴AE⊥BC,
∵AE⊥PB,PB∩BC=B,∴AE⊥平面PBC,
∵AE⊂平面AEF,∴平面AEF⊥平面PBC;
(2)∵BC⊥平面PAB,PB⊂平面PAB,∴BC⊥PB,
结合AB⊥BC,可得∠PBA是二面角P-BC-A的平面角,
∵Rt△PAB中,PA=AB=2,∴∠PBA=45°,
由此可得二面角P-BC-A的大小为45°;
(3)由(1)AE⊥平面PBC
又∵AF⊥PC
∴EF⊥PC(三垂线定理逆定理)
∴△PEF∽△PCB
∴=
| S△PEF |
| S△PBC |
| PE2 |
| PC2 |
| 1 |
| 6 |
| 1 |
| 6 |
| ||
| 3 |
∴VP-AEF=VA-PEF=
| 1 |
| 3 |
| 2 |
| ||
| 3 |
| 2 |
| 9 |

