矩阵可逆的证明
一个矩阵有:A^2=A,A=E-ab(b为a转置矩阵),如果ba=1,证明A不可逆.
我想知道ba=1,可不可以这么做:
ba=1,然后|ba|=|1|=|a||b|=|ab|,由A^2=A可化为Aab=0,由于|ab|不等于0,则ab方阵可逆,r(ab)=n,Aab=0,r(A)+r(ab)小于等于n,则r(A)=0,所以A不可逆.
人气:113 ℃ 时间:2020-03-26 06:25:38
解答
"由于|ab|不等于0,则ab方阵可逆," 这段不成立.r(ab) = 1 => |ab|= 0,
ab 肯定是不可逆的.
从 Aab=0,如果 A可逆,则 A^(-1) * Aab = 0 => ab = 0 这与 ba=1 矛盾.所以A不可逆.
推荐
猜你喜欢
- what is important when selling a new porduct?
- 在同一直线上有四点A、B、C、D,AD=九分之五DB,AC=五分之九CB,且CD=4,求AB
- 哪年哪月我国第一颗原子弹爆炸成功
- 设α是第三项限角,问是否存在实数m使得sinα、cosβ是关于方程8乘(X的平方)-6mx+2m+1=0的根?
- 名词解释题:政府公共关系传播
- 一种儿童专用自行车前轮直径是28cm,后轮直径是35cm,后轮行走32圈的路程,则前轮行走了多少圈?算术写出来!
- 一个等腰梯形周长是48Cm面积是96Cm.高是8Cm.梯形的一条腰是多少厘米?
- 20个同学站一排,从左数明明在17位,从右数君君在15位 明明和君君中间有几个同