已知AB是椭圆x^2/a^2+y^2/b^2=1的一条弦向量OA+向量OB=2向量OM,向量OM=(2,1),以M为左焦点,以椭圆的右准线
相应准线的双曲线左支与直线交于N(4,-1)⑴求椭圆的离心率e1⑵设双曲线的离心率为e2,e1=e2=f(a),求f(a)的解析式,并求它的定义域和值域
人气:370 ℃ 时间:2020-06-20 07:02:32
解答
椭圆的右准线x =a^2/c 2√2=|a^2/c-4|×e 即e=2√2/(a^2/c-4)
又AB方程x+y-3=0 联立方程b^2 x^2 +a^2 y^2-a^2 b^2=0 和x+y-3=0
得(a^2+b^2)x^2-6ax^2+9a^2-a^2b^2=0 x1+x2=6a^2/(a^2+b^2)=4
所以a^2=2b^2,即a^2=2c^2 所以椭圆的离心率e'=√2/2 从而e=2/(| a-2√2 |)
由题设e-e'=1,即e=√2,所以(| a-2√2 |=√2,解得a=3√2,或a=√2
若a=√2,则由M(2,1)椭圆内矛盾,所以a=3√2,从而椭圆的方程为x^2/18+y^2/9=1
推荐
- 已知椭圆X_2/a_2+Y_2/b_2=1(a>b>0),过椭圆的右焦点作X轴的垂线交椭圆于A.B点,若向量OA*向量OB=0,则...
- 椭圆x^/25+y^/16=1上一点P到左准线的距离为10,F为左焦点,若点M满足向量OM=1/2(向量OP+向量OF),则
- 如图,F1,F2是椭圆x^2/a^2+y^2/b^2=1的左右焦点,点M在x轴上,且向量OM=√3/2向量OF2,
- 已知以F为焦点的抛物线y2=4x上的两点A、B满足AF=3FB,则弦AB的中点到准线的距离为( ) A.83 B.43 C.2 D.1
- 椭圆坐标原点O焦点在x轴,斜率为1且过椭圆右焦点F的直线交椭圆于A B两点,向量OA+OB与a=(3,-1)共线
- 求 作文 生活中的喜怒哀乐 和 身边的友谊 二选一 1000字 跪求~~
- 原价为180元的电风扇打八折,现价为多少元?
- 97+X等于0.6*《165+X》
猜你喜欢