定义在(0,
)上的函数f(x),其导函数是f′(x),且恒有f(x)<f′(x)•tanx成立,则( )
A. f(
)>
f(
)
B. f(
)
<f(
)
C.
f(
)>f(
)
D.
f(
)<f(
)
因为x∈(0,π2),所以sinx>0,cosx>0.由f(x)<f′(x)tanx,得f(x)cosx<f′(x)sinx.即f′(x)sinx-f(x)cosx>0.令g(x)=f(x)sinx,x∈(0,π2),则g′(x)=f′(x)sinx−f(x)cosxsin2x>0.所...