如图抛物线y^2=2px(p>0),AB为焦点弦,M是AB中点,过A,B,M坐抛物线准线l的垂线
垂足A1,B1,M1.
试用几何法证明FM1⊥AB
ZHENG:连接AM1,易有A1A=AF.AM1=AM1,证明△AA1M全等△AM1F,另一个条件如何得到
人气:368 ℃ 时间:2020-06-26 15:22:30
解答
设A(x1,y1) B(x2,y2) M(x0,y0)
M1(-p/2,y0) F(p/2,0)
点差法计算AB斜率:
A,B满足抛物线方程y1^2=2px1 y2^2=2px2
两式相减y1^2-y2^2=2px1-2px2
K(AB)=(y1-y2)/(x1-x2)=2p/(y1+y2)=p/y0
两点计算斜率K(M1F)=(y0-0)/(-p/2-p/2)=-y0/p
K(AB)*K(M1F)=-1= =>FM1垂直于AB
即有角AFM1=角AA1M1=90
又有AA1=AF,AM1=AM1
故有三角形AA1M1全等于三角形AM1F
推荐
- 已知l为抛物线y2=2px(p>0)的准线,AB为过焦点F的弦,M为AB中点,过M做直线L的垂线,垂足为N交抛物线与点P
- AB是过抛物线Y2=2PX(P,0)焦点F的弦,M是AB的中点,l是抛物线的准线,
- 设过抛物线y²=2px(p>0)的焦点且倾斜角为π/4的直线交抛物线于A、B两点,若弦AB的中点垂线恰好过点Q(5,0),求抛物线的方程
- AB是过抛物线x^2=y的焦点的弦,且|AB|=4,求弦AB的中点到直线
- AB是过抛物线y^2 = 2px(p>0)的焦点的弦,M是AB的中点,l为准线,MN⊥l于N
- accord、treaty 和convention的区别是什么?
- 用加减法解二元一次方程组:
- 双缩脲鉴定蛋白质或多肽的存在
猜你喜欢