∴∠B=∠ACB=
180°−∠A |
2 |
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=20°;
(2)∵在△ABC中,AB=AC,∠A=70°,
∴∠B=∠ACB=
180°−∠A |
2 |
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=35°;
(3)猜想:∠NMB=
1 |
2 |
证明:∵在△ABC中,AB=AC,
∴∠B=∠ACB=
180°−∠A |
2 |
1 |
2 |
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=
1 |
2 |
(4)不需要修改.
若∠A=100°,
∵在△ABC中,AB=AC,
∴∠B=∠ACB=
180°−∠A |
2 |
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=50°=
1 |
2 |