正项数列an的前n项和Sn满足Sn^2-(n^2+n-1)Sn-(n^2+n)=0令bn=(n+1)/(n+2)^2an^2其前n项和为Tn
试证明:对于任意的x∈N+都有Tn<5/64
人气:165 ℃ 时间:2019-12-03 05:26:14
解答
[Sn - (n^2 + n)](Sn + 1) = 0
因为an 是正项数列 Sn = n^2 + n
an = Sn - Sn-1 = 2n
bn = (n + 1)/4n^2(n+2)^2 = 1/16 * [ 1/n^2 - 1/(n + 2)^2 ]
Tn = 1/16 *
( 1 - 1/9
+ 1/4 - 1/16
+ 1/9 - 1/25
.
+ 1/(n-1)^2 - 1/(n + 1)^2
+ 1/n^2 - 1/(n+2)^2 )
=1/16 * [ 1 + 1/4 -1/(n + 1)^2 - 1/(n+2)^2 ]
推荐
- 若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:bn;{bn}的前n项和Tn
- 3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn}前n项的和Tn.
- 已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn
- 已知数列an的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn
- 数列{an}前n项和Sn=n^2+n 1.求{an}通项 2.若bn=(1/2)^an+n,求{bn}前n项和Tn
- We can study at home by watching educators on TV or on a computer screen.
- 翻译诗经
- 最大公约数与最小公倍数练习题之一
猜你喜欢