设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
人气:344 ℃ 时间:2020-05-11 05:59:16
解答
有些细节也没想清楚,不过大概就是,x1,x2,…,xn全相等时显然成立,不相等时可以找出f(xi)中的最大最小,然后通过t1(f(x)-f(x1))+t2(f(x)-f(x2))+...+tn(f(x)-f(xn))这个关于x的函数在f(x)取最大最小时分别为正和负来通过连续性判断f(x)等于零的情况的存在.
这个函数就是通过把要证结论左边的f(ξ)*1展成f(ξ)*(t1+...tn)并和右边合并之后得到的.这也是这类问题的思路,就是把等式转化为一个函数式.
至于没有讨论到的细节还需要在完善.但是思路就是这样的.
推荐
- 在匀加速运动中相等的位移内时间的比是多少!已知t1 = t2= ...= tn 求x1 :x2:...:xn
- 已知n是正整数,Pn(xn,yn)是反比例函数y=k/x图象上的一列点,其中x1=1,x2=2,…,xn=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是_.
- 证明:若函数f(x)在[a,b]上连续,x1,..,xn属于[a,b]且t1+...+tn=1 ti>0(i=1,...,n),则在[a,b]上至少存在
- 因为T(n)=2^(4n)-1/2^{n(n+1)},证明T1+T2+.+Tn
- 已知N是正整数,Pn(Xn,Yn)是反比例图像上的一列点,其中X1=1,X2=2,...Xn=N记T1=X1Y2若T1=1
- 某书店要在店内醒目的地方挂一条横幅,条幅上写一句名言,请问写什么名言适合那?
- 有谁会做一元二次方程的回答一下,我问几个问题.
- 在平面直角坐标系中,作出函数y等于负二分之一x加一的图像,并根据图像回答问题:(1)当x取何值时,y>0?(2)当0≤x≤2时,求y的取值范围.
猜你喜欢