> 数学 >
如果偶函数f(x)在R上可导,且是周期为T=3的周期函数,且f′(1)=0,则方程f′(x)=0在区间[0,6]上的实根个数至少是(  )
A. 11
B. 9
C. 7
D. 5
人气:360 ℃ 时间:2019-10-19 01:48:30
解答
由偶函数f(x)的周期为T=3可得,f(x+
3
2
)=f(x-
3
2
)=f(
3
2
-x),
∴偶函数f(x)的图象关于直线x=
3
2
对称,且函数f′(x)是奇函数,且周期等于
3
2

由偶函数f(x)在R上可导,知 f'(0)=f'(
3
2
)=f'(3)=0.
再由周期等于
3
2
以及 f′(1)=0,求得 f′(
5
2
)=f′(4)=f′(
9
2
)=f′(
11
2
)=f′(6)=0.
综上,方程f′(x)=0在区间[0,6]上的实根为 x=0,
3
2
,1,
5
2
,3,4,
9
2
11
2
,6,共有9个,
故选B.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版