>
数学
>
如果偶函数f(x)在R上可导,且是周期为T=3的周期函数,且f′(1)=0,则方程f′(x)=0在区间[0,6]上的实根个数至少是( )
A. 11
B. 9
C. 7
D. 5
人气:287 ℃ 时间:2019-10-19 01:48:30
解答
由偶函数f(x)的周期为T=3可得,f(x+
3
2
)=f(x-
3
2
)=f(
3
2
-x),
∴偶函数f(x)的图象关于直线x=
3
2
对称,且函数f′(x)是奇函数,且周期等于
3
2
.
由偶函数f(x)在R上可导,知 f'(0)=f'(
3
2
)=f'(3)=0.
再由周期等于
3
2
以及 f′(1)=0,求得 f′(
5
2
)=f′(4)=f′(
9
2
)=f′(
11
2
)=f′(6)=0.
综上,方程f′(x)=0在区间[0,6]上的实根为 x=0,
3
2
,1,
5
2
,3,4,
9
2
,
11
2
,6,共有9个,
故选B.
推荐
f(x)是定义在R上以3为周期的偶函数,且f(2)=0 则方程f(x)=0在区间(0 -6)...
f(x)是定义在R上的以3为周期的偶函数,且F(2)=0,则方程F(X)=0在区间(0,6)内解的个数至少是几个
fx是定义在R上的以3为周期的偶函数,且f(2)=0,则方程fx=0在区间(0,6)内解得个数的最小值是
设f(x)是定义在R上以2为周期的周期函数 且f(x)为偶函数 在区间[2,3] f(x)=-2(x-3)^2+4 求x∈[1,2]时 f(x)的解析式
f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是( ) A.5 B.4 C.3 D.2
a、b、c、d是四个互不相同自然数,这四个自然数相乘的积是1988,求a+b+c+d的最大值和最小值
12°32′42〃+26°18″
英语翻译
猜你喜欢
著名思想家被人们敬称为”子“,他们的原名是什么?如孔子原名孔丘.
三峡之前世界最大的水利工程
描写猕猴桃 的诗句
带日带日成语有哪些
夫加一个偏旁等于什么字
喧腾而沸腾意思的词语
形容树很老的词语
高中英语动词不定式问题
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版