> 数学 >
若偶函数f(x)=ax²+bx+1(a.b属于R)在[-1,1]上的最大值为M,最小值是N
且M-N=1,则实数a的值是多少?
人气:214 ℃ 时间:2020-06-25 20:58:46
解答
因为是偶函数,所以f(-x)=f(x),则b=0,若a<0,则f(max)=f(0)=1,f(min)=f(-1)=f(1)=1+a,解得a=-1
若a>0,f(max)=1+a,f(min)=1,则a=1,
综上a=1或-1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版