在四棱锥P-ABCD中,平面PAD⊥平面ABCD.∠ABC=∠BCD=90°,PA=PD=DC=CB=1/2AB,E是PB的中点.
求证:(1)EC平行于平面APD
(2)求BP与平面ABCD所成角的正切值
人气:213 ℃ 时间:2019-11-25 12:30:30
解答
证明:(1)
取AB中点M,连接CM、EM
在△BPA中,ME是中位线,∴ME∥PA
在四边形ABCD中,
∵∠ABC=∠BCD=90°,DC=1/2AB=AM
∴四边形ADCM是平行四边形 (BC与AM平行且相等)
则MC∥AD
∴面CEM∥面APD (一对相交线平行)
则 CE∥面APD
(2)
取AD的中点N,连接PN、BN
∵PA=PD
∴PN⊥AD
∵平面PAD⊥平面ABCD
∴PN⊥平面ABCD
则 PN⊥BN ∠PBN即为BP与面ABCD所成角.
连接DM、BD
∵DC∥MB,BC=DC=AB/2=MB,∠ABC=∠BCD=90°
∴ 四边形BCDM是正方形
设AB=2a
则 AM=MB=BC=EC=DM=PA=PB=a
AD=MC=DB=√2a
DN=AD/2=√2/2 a
PN²=PD²-DN²=a²-1/2a²=1/2a²,PN=√2/2a
∵ DM⊥AB,MD=MB=MA
∴ ∠MDA=∠MDB=45° ,即 ∠BDA=90°
BN²=BD²+DN²=2a²+1/2 a²=5/2a² BN=√10/2a
tan∠PBN=PN/BN= √2/2a / √10/2a =√5/5
推荐
- 如图所示在四棱锥P_ABCD中AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD
- 如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=1/2AB,E是PB的中点. (Ⅰ)求证:EC∥平面PAD; (Ⅱ)求证:BD⊥平面PAD.
- 如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1
- 如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=根号2a,点E是PD的中点
- 底面为菱形的四棱锥P—ABCD,∠ABC=60 ,PA=AC=a,PB=PD=(√2)a,E为PD中点
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢