已知函数f(x)=ax3+bx2在x=-1时取得极值,曲线y=f(x)在x=1处的切线的斜率为12;函数g(x)=f(x)+mx,x∈[1,+∞),函数g(x)的导函数g'(x)的最小值为0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求实数m的值;
(Ⅲ) 求证:g(x)≥-7.
人气:294 ℃ 时间:2019-08-18 10:28:17
解答
(Ⅰ)∵f(x)=ax3+bx2,∴f'(x)=3ax2+2bx.由题意有f′(−1)=3a−2b=0f′(1)=3a+2b=12,解得a=2b=3.∴函数f(x)的解析式为f(x)=2x3+3x2.(Ⅱ)g(x)=f(x)+mx=2x3+3x2+mx,x∈[1,+∞),g′(x)=6...
推荐
- 已知函数f(x)=x3+ax2+bx+5,若x=2/3时,y=f(x)有极值,且曲线y=f(x)在点f(1)处的切线斜率为3. (1)求函数f(x)的解析式; (2)求y=f(x)在[-4,1]上的最大值和最小值.
- 若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)
- 已知函数f(x)=ax³+bx²在x=-1时取得极值,曲线y=f(x)在x=1处的切线的斜率为12;
- 已知函数f(x)=x^3+ax^2+bx+c,曲线在点x=1处的切线为3x-y+1=0,若x=2/3时,y=f(x )有极值.
- 已知函数f(x)=x^3+ax^2+bx+c在x=1处取得极值,且在x=-1处得切线的斜率为2
- 人面桃花相映红全诗及其作者
- 将下面的单词组成完整的句子,注意标点用法.
- 有一本故事书,小红12天能看完,小明每天比小红多看20%,小明几天能看完这本书
猜你喜欢
- 对数函数单调区间 求 lg(1+x/1-x)的单调区间 急用!
- 高中化学难题哦
- 一次函数y=(m-4)x+1-m与y=(m+2)x+(-2m-3)的图象与y轴分别交与P,Q两点,若点P,Q关于x轴对称求m的值
- 敲鼓时,敲得越快,鼓面震动的频率越高,音调越高是吗
- 怪题是如何读?
- 东方百货地下停车场共停有四轮车和两轮摩托车38辆,轮子共有128个,小轿车和摩托车各几辆,列算式计算
- not until倒装句 强调句
- 飞机在两城市之间飞行,顺风时需2小时30分,逆风时需多用半个小时,若风速为30km/h,求两城市间的距离.