函数f(x)=-ax+xlnx在区间[1,e的平方]上不单调,求a的取值范围.
人气:398 ℃ 时间:2020-03-19 07:17:37
解答
f'(x)=-a+1*lnx+x*1/x=-a+lnx+1
不单调则f'(x)在区间内有正有负
因为f'(x)=lnx-a+1是增函数
有正有负
则最小值小于0,最大值大于0
即f'(e²)=2-a+1>0
f'(1)=0-a+1
推荐
- 已知函数f(x)=(ax2+x)-xlnx在[1,+∞)上单调递增,则实数a的取值范围是_.
- 已知f(x)=xlnx,g(x)=x^3+ax^2-x+2.(1):求函数f(x)的单调区间(2)求函数f(x)在[t,t+2](t>0)上的最小
- 已知函数f(x)=ax2+x-xlnx, (1)若a=0,求函数f(x)的单调区间; (2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.
- 已知函数f(x)xlnx,g(x)=x^3+ax^2-x+2.(1)如果函数g(x)的单调递减区间为(-1/3,1),求函数y=g(x)的图像在点p(-1,1)的切线方程.(2)若不等式2f(x)≤g'(x)+2在x∈[1,2]上有解,求实
- 已知函数f(x)=xln x.若对所有x≥1都有f(x)≥ax-1,则实数a的取值范围为_.
- 亮亮看一本208页的故事书前三天看了24页照这样计算看完这本书还要多少天?比例解
- 在三角形abc中,cos(A+B)=1/2,则sinC=
- 太空中温度为什么低?
猜你喜欢
- 有甲乙两桶水,如果向乙桶倒入10千克水,两桶水就一样重,后面的在问题补充里
- 怎么解80%X-40%X=3这个方程
- 商店搞促销,买四送一,这实际是打()折销售;超市里许诺,买多少送多少,这是打()折销售.
- 在等式tan30+tan10=( )/sin50的括号中填写一个实数,使得等式恒成立,则应填入的实数为
- 常数项为什么是同类项
- I can do it with my friends用英语怎么回答
- 求回环词,如蜜蜂-蜂蜜
- 碘的升华是吸热反应还是放热反应