> 数学 >
已知数列{an}中,a1=5,a2=2,an=2a(n-1)+3a(n-2)(n≥3)能否写出它的通项公式
怎么知道要分这两种情况?怎么看出来?
an + a(n-1) = 3a(n-1) + 3a(n-2) = 3[a(n-1)+a(n-2)]
[an + a(n-1)]/[a(n-1)+a(n-2)] = 3,
说明新数列:[an + a(n-1)]是公比为3的等比数列,首项为:a1+a2=5+2=7
an + a(n-1) = 7×3^(n-2),【1】
又:an - 3a(n-1) = -a(n-1)+3a(n-2) = - [a(n-1)-3a(n-2)]
即an - 3a(n-1)也是公比为-1的等比数列,首项是:2-3×5=-13
an- 3a(n-1) = -13*(-1)^(n-2) = -13*(-1)^n,【2】
【1】×3 +【2】并整理后得到:
an = [7*3^(n-1) - 13*(-1)^n]/4
人气:174 ℃ 时间:2019-11-21 16:46:04
解答
由特征根法,
x^2 = 2x + 3,
0=x^2 - 2x - 3=(x-3)(x+1),
x(1)=-1,x(2)=3.
a(n) - x(1)a(n-1) = [2-x(1)][a(n-1) - x(1)a(n-2)] ,从而得到【1】
a(n) - x(2)a(n-1) = [2-x(2)][a(n-1) - x(2)a(n-2)],从而得到【2】.
因特征根法求出了2个特征根.因此,可以分2种情况讨论.
感谢楼主的这个提问,让俺开阔了思路...x^2 = 2x + 3,这是什么??特征方程.a(n)=2a(n-1)+3a(n-2),a(n-2+2)=2a(n-2+1)+3a(n-2),x^2=2x+3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版