若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为()
人气:301 ℃ 时间:2019-10-29 14:28:16
解答
设|AB|=1,|CA|=2|CB|,则CA向量.CB向量的最大值2
CA • CB = |CA| |CB| cosX ( X 为向量 CA 和 CB 夹角)
根据余弦定理可得:
|AB|^2 = |CA|^2+ |CB|^2 - 2|CA||CB| COSX
1 = 4|CB|^2+|CB|^2 - 4 |CB|^2 COSX
1= 5|CB|^2 - 4 |CB|^2 COSX
|CB|^2 = 1/ (5-4COSX)
CA •CB = |CA| |CB| cosX = 2|CB|^2cosX
= 2COSX/((5-4COSX)
当COSX=1 ,2COSX/((5-4COSX)= 2 (最大值)
推荐
- 若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为
- 若模AB=1,模CA=2模CB则 向量CA*CB的最大值为
- △ABC中,点D在边AB上,CD平分∠ACB,若向量CB=a,向量CA=b,|a|=1,|b|=2,求向量CD=?
- 在三角形ABC的一边AB长为6,向量CA×向量CB=7,则三角形的最大值为
- 向量 在△ABC中,AB边的高为CD,若向量CB=a,向量CA=b,a·b=0,|a|=1,|b|=2,则向量AD=?
- 求 作文 生活中的喜怒哀乐 和 身边的友谊 二选一 1000字 跪求~~
- 原价为180元的电风扇打八折,现价为多少元?
- 97+X等于0.6*《165+X》
猜你喜欢