线性代数:向量
从R∧2的基列向量α1=[1 0],α2=[1 -1]到基β1=[1 0],β2=[1 2]的过渡矩阵为?
人气:401 ℃ 时间:2020-02-01 11:04:25
解答
如下取法:
由E-A=1,0,-1
0,0,0
0,0,0
知 x1-x3=0
凑成一个完整的线性方程组(于原线性方程组同解)
x1= x3
x2= x2
x3= x3
注意等号右边,从上向下看,
x2的系数为(0,1,0)
x3的系数为(1,0,1)
这两个向量就构成基础解系
从而方程组的任何一个解可以表示成基础解系的组合形式:
K1*(0) K2*(1)
(1) + (0)
(0) (1)
打字不易,
推荐
猜你喜欢
- Would you like_____ _____(watch)'Aladdin'?yes,I'd____ ____.
- 2.25加4分之3等于几?
- 已知ab不等于1,且有5a2+2012a+9=0,9b2+2012b+5=0求b/a的值求解…
- 英语翻译
- 关于酸碱度测定中n是什么意思?
- 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动(1)求点D的坐标(用含m的代数式表示);
- 已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.
- 在△ABC中,已知内角A=π/3,边BC=2倍根号3,设内角B=x,周长为y.