∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
过点O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位线,
∴OF=
1 |
2 |
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等边三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;
②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,
根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=
1 |
2 |
| ||
2 |
(2)当∠α=90°时,四边形EDBC是菱形.
∵∠α=∠ACB=90°,

∴BC∥ED,
∵CE∥AB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2
3 |
∴AO=
1 |
2 |
3 |
在Rt△AOD中,∠A=30°,OD=
1 |
2 |
AD=
AO2+OD2 |
(
|
∴AD=2,
∴BD=2,
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形.