设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点C属于(0,a),使f(c)+cf‘(c)=0
人气:233 ℃ 时间:2019-11-10 18:14:58
解答
令F(x)=xf(x)
∵f(x)在[0,a]上连续,在(0,a)内可导
∴F(x)也在[0,a]上连续,在(0,a)内可导
F'(x)=f(x)+xf'(x)
F(0)=0×f(0)=0
又f(a)=0
∴F(a)=a×f(a)=0=F(0)
∴由罗尔定理,存在一点C属于(0,a),使f(c)+cf'(c)=0
推荐
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- 证明:设f(x)在[a,b]上连续,在(a,b)内可导,则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(b)-af(a)]/(b-a)
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:至少存在一点C∈(0,a),使得f(C)+Cf '(C)=0
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(c)+df(c)=0这
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)=0
- 棉花燃烧是烧羽毛味还是烧纸味?
- 设f(x)=4^x/(4^x+2),则f(1/11)+f(2/11)+...+f(10/11)的值为
- 小美家的时钟分针唱6厘米,分针走过15分钟,它的尖端走过多少厘米?分针旋转过的面积是多少平方厘米?
猜你喜欢