包含零向量的向量组一定线性相关?
刘老师您好:
课本上给的证明是这样的:
考虑向量组0,a2,...,as∈R^n,由于0=0a2+...+0as 故由定义3.9知向量组0,a2,...,as线性相关.
--------------------
定义3.9:R^n中的向量a1,a2,...,as(s≥2)称为线性相关,如果a1,a2,...as中至少有一个向量可以由向量组中的其余向量线性表出.
----------------
定理3.2:R^n中的向量组a1,a2,...,as(s≥1)线性无关的充分必要条件是,仅当常数k1=k2=...ks=0时,k1a1+k2a2+...+ksas=0才能成立.
----------------------
我的问题是,由定理3.2可知常数k1=k2=...ks=0,k1a1+k2a2+...+ksas=0时,线性无关.而证明中的「0=0a2+...+0as」说明常数都是0,却为什么可用来证明线性相关呢?
人气:139 ℃ 时间:2020-03-25 12:02:58
解答
"由定理3.2可知常数k1=k2=...ks=0,k1a1+k2a2+...+ksas=0时,线性无关"
这样说不对.
当 k1=k2=...ks=0 时, 总是有 k1a1+k2a2+...+ksas=0, 但这不能说明线性无关或线性相关
注意定理中的描述 :仅当.时.成立
证明中用的是线性相关的定义:
因为 0 向量可由a2,...,as 线性表示, 所以向量组 0,a2,...,as 线性相关
推荐
猜你喜欢
- 双曲线x2−y24=1的渐近线方程是_.
- 设函数f(x)=ax^2+bx+c(a>0)且f(1)=-a/2(1)求证函数f(x)有两个零点
- 将下列细胞或细胞器置于蒸馏水中,不会破裂的是( ) A.红细胞 B.叶绿体 C.线粒体 D.洋葱表皮细胞
- 若(a+1)的平方+| b-2013|=0,则2012-a的b次方=?
- 请问“君”、“子”和“君子”的解释
- m为何值时方程组{5x+6y=3m+2{6x+5y=4m-7的解满足x小于0,y大于0
- 利用7,6,9,2,4,0,这6个数中的5个数字组成同时含有因数2,3,5,的所有5位数,共有多少
- 已知点A(0,-1),在抛物线y=2x^2+1上任取一点B,求线段AB的中点满足的方程