已知点P(1,根号3)是曲线f(x)=y=Asin(ωx+φ)(A>0,ω>0,绝对值φ<π)的一个最高点,且f(9-x)=f(9+x),x∈R,曲线在(1,9)内与x轴有唯一一个交点,求函数解析式
人气:382 ℃ 时间:2020-06-10 17:49:50
解答
最高点纵坐标=√3
所以|A|=√3,A〉0
所以A=√3
所以f(x)最大值=√3
f(9-x)=f(9+x),
所以x=9是对称轴
所以x=9时,f(x)有最值
若f(9)是最大值
因为f(1)也是最大值
则(1,9)至少有一个周期
正弦函数在两个最高点之间和x轴有两个交点
不合题意
若f(x)是最小值
则若(1,9)之间是半个周期,f(x)和x轴确实只有一个交点
所以T/2=9-1=8
T=16=2π/|ω|
ω>0
所以ω=π/8
f(x)=√3sin(π/8*x+φ)
f(1)=√3
所以π/8+φ=2kπ+π/2
φ=2kπ+3π/8
|φ|<π
所以k=0,φ=3π/8
f(x)=f(x)=√3sin(π/8*x+3π/8)
推荐
- 三角函数题:已知点P(1,根号3)是曲线f(x)=y=Asin(ωx+φ)
- 已知点P(1,根号3)是函数f(x)=Asin(ωx+ψ)(A>0,ω>0,丨ψ丨<π).的图像的一个最高点,且f(9-x)=f(9+
- 已知曲线y=Asin(ωx+φ)(A〉0,ω〉0) ,上的一个最高点的坐标是(2,2根号2)
- 求曲线y=f(x)=3次根号下x^2在点(1,1)处的切线方程
- 已知曲线y=Asin(wx+φ)(A>0,w>0)上的一个最高点的坐标为(π/8,根号2),此点到相邻最低点的曲线与x轴交于点(3/8π),若φ∈(-π/2,π/2),球这条曲线的函数解析式
- 2cos^2 α-1=?
- 除了黄土高原,那里再有这么厚这么厚的土层啊!的赏析
- 渔民在叉鱼时,真实的鱼是在渔夫看到的鱼的________像
猜你喜欢