【高数】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋转体的表面积
【高等数学】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋转体的表面积
人气:148 ℃ 时间:2020-02-05 11:39:09
解答
小的不才,可以给你一个思路,任何图形绕X轴转一周的表面积均可用以下公式求出(我自创的哦,呵呵)S=∫f(x)*√1+[f'()]^2*dx 其中∫为积分符号,√为根号.
根据题意,f'(x)=(1-cosa)/sina
则f(x)=∫f(x)*dx
则面积S=∫[∫f(x)*dx]*√1+[(1-cosa)/sina]^2 *dx
答案一定是个很恐怖的式子,我没时间算出来,吃饭去咯!
推荐
猜你喜欢
- 白兔的只数是黑兔的2/5,灰兔的只数是白兔的1/3,有灰兔2只,你知道黑兔有多少只吗?
- 你怎样做一份苹果奶昔呢?用英语怎么说?
- 什么是光波的波长
- his father loves he very much/his father loves him very much 这两个句子那个对
- 函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x²–x+1,那么当x>1时,f(x)的
- Do you know the girl __the red sweater?Awear Bwore Cin 为何in 不行,
- 冯骥才日历北师大课后练习题~
- 设区域D:x²+y²=2x与x轴围成的上半圆,则二重积分∫∫f(x,y)dxdy=?(用极坐标法表示)