∵△PQG由线段AD、BE、CF的中点构成的三角形,M是AE的中点,N是CE的中点,H是CD的中点,
∴QM=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∵AB=BC=AC,EF=DE=DF,
∴QM=QN=PH,PM=NG=HG,
∵∠PMQ=∠AMQ+∠AMP=∠MQE+∠QEM+∠AED=∠MQN+∠NQE+∠QED=∠ABE+∠QED=∠ABC+∠CBE+∠QED=60°+∠EBC+∠QED,∠QNG=∠QNC+∠CNG=∠NQE+∠QEN+∠NED+∠DEF=∠NQE+∠QED+60°,
∴∠PMQ=∠GNQ,
在△PQM和△GQN中,
|
∴△PQM≌△GQN(SAS),
∴PQ=QG,
同理可证:PG=PQ=QG,
∴△PQG是正三角形.